

Tungaloy Report TG0712-D1

TXN / EXN Typ

Erweiterung: EXN6 Schaftfräser und TXN6 Aufsteckfräser

DEED SERIE

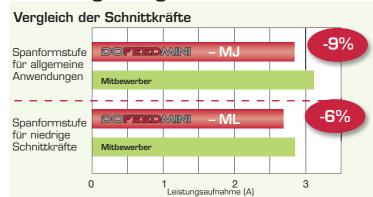
Neue Generation von Hochvorschubfräsern jetzt auch für mittlere bis große Bearbeitungszentren geeignet.

Aus dem Hause Tungaloy kommt mit der erweiterten Serie der DoFeed Hochvorschubfräser ein neues Fräskonzept, das höchste Produktivität in der Schruppbearbeitung von Stahl, Eisengusswerkstoffen, rostfreiem Stahl und Superlegierungen garantiert.

Die DoFeed Fräser überzeugen bei hohen Vorschüben durch höchste Stabilität und ruhigen Lauf. Die hohe Zähnezahl in Verbindung mit dem großen Neigungswinkel der Wendeschneidplatten erzielt exzellente Spanabfuhr und höchste Produktivität das Zerspanvolumen wird um bis zu 50% und AH120 erhältlich und sind allesamt erhöht!

Die negativen Wendeschneidplatten mit Sortenvielfalt macht den DoFeed Fräser zu

und reduzieren Schnittkräfte, wodurch diese neue Hochvorschubfräser Serie auf unterschiedlichsten Maschinen zum Einsatz kommen kann. Die doppelseitigen Wendeschneidplatten mit 4 Schneiden und den Spanformstufen - MJ oder - ML ermöglichen dem **Dofeed** Fräser exzellente Standzeiten


Die Wendeschneidplatten des DoFeed Fräsers sind in den Sorten AH725, AH130 mit Tungaloys spezieller "PremiumTec" Oberflächentechnologie ausgestattet. Diese großem Spanwinkel verhindern Vibrationen einem flexibel einsetzbaren und leistungs-

fähigen Werkzeug. Durch die zentrale Kühlmittelzufuhr wird zudem exzellente Spanabfuhr garantiert. Spanschlag wird verhindert und die Bearbeitungstemperatur an der Schneidkante bleibt optimal erhalten. So garantiert der DoFeed Fräser eine Hochvorschubbearbeitung mit höchster Produktivität.

DoFeed - der perfekte "Allrounder"!

Tungaloy **Keeping the Customer First**

Leistungsvergleich

Werkzeug : EXNO3RO25M25.0-05

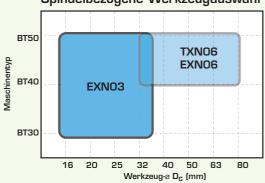
 $(\emptyset 25, Z = 5)$

Wendescheidplatte: LNMU0303ZER-MJ/-ML

Sorte : AH725

 $\begin{tabular}{lll} Werkstoff & : Kohlenstoffstahl C55 \\ Schnittgeschw. & : V_C = 250 \ m/min \\ Zahnvorschub & : f_Z = 0.5 \ mm/Z \ (1WSP) \\ \end{tabular}$

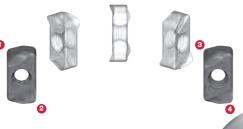
Schnitttiefe : $a_p = 0.5 \text{ mm}$


Schnittweite : a_e = 25 mm (Nutenfräsen)
Maschine : Vertikales BAZ, BT40

Kühlung : ohne

Für unterschiedlichste Maschinentypen

EXN03	 Exzellente Zerspanleistung auf kleinen bis mittleren Bearbeitungszentren Fräser-ø: D_C = 16 - 32 mm Max. Schnitttiefe: max. a_p = 1.0 mm
TXN06	 Exzellente Zerspanleistung auf mittleren bis
EXN06	großen Bearbeitungszentren Fräser-ø: D_C = 32 - 80 mm Max. Schnitttiefe: max. ap = 1.5 mm


Spindelbezogene Werkzeugauswahl

Wendeschneidplatten in 2 Größen

Wirtschaftliche 4-Schneidenausführung

Technologievorsprung für höchste Produktivität

Eigenschaften

Exzellente Spanabfuhr

Zentrale Kühlmittelzufuhr verhindert Spanschlag

Optimale Spankontrolle

Großer Neigungswinkel für sicheren Spanfluss

OFFED

GutGleichmäßige
Späne mit
optimaler Länge!

Mitbewerber

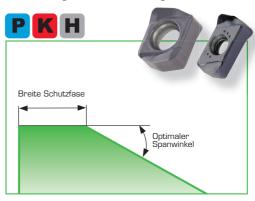
SCHLECHT Ungleichmäßige Späne oder Spänestau

Halter : TXNO6R050M22.0E05

Wendescheidplatte: LNMU06X5ZER-MJ Sorte: AH725

 $\begin{tabular}{lll} Werkstoff & : Kohlenstoffstahl C55 \\ Schnittgeschw. & : V_C = 180 \ m/min \\ Zahnvorschub & : f_Z = 1.8 \ mm/Z \\ Schnitttiefe & : a_P = 1.0 \ mm \\ Maschine & : Vertikales BAZ, BT50 \\ \end{tabular}$

Kühlung : ohne


Hohe Schneidenzahl für maximale Produktivität

ſ	Artikel Nr.	Werkzeug-ø	Anzah	I WSP	Produktivitäts-
l	Artikei IVI.	D _C (mm)	DOFEED	Mitbewerber	steigerung
	EXN03	ø20	4	3	
	EXIVUS	ø25	5		1.3 x
	TXN06	ø50		4	
	EXN06	ø63	6		1.5 x

DOFEED SERIES

Spanformstufen

- MJ Allgemeine Anwendung

- Außergewöhnliche Kombination von Schärfe und Stabilität
- Geeignet für Stahl, gehärteten Stahl und Eisengusswerkstoffe

- ML Niedrige Schnittkräfte

- Scharfe Schneidkanten
- Geeignet für die Bearbeitung von rostfreiem Stahl und hitzebeständigen Legierungen
- Geringe Vibrationsneigung

Stahl

K Eisenguss

S Hitzebeständige

Gehärteter Stahl

M Rostfreier Stahl

Modernste Beschichtungtechnologie

Sorten

PREMIUMTEC

AH725

- Einzigartiges Substrat mit neu entwickelter Beschichtung
- Ausgewogener Verschleiß- und Bruchwiderstand
- Geeignet für Stahl, gehärteten Stahl, Eisengusswerkstoffe und hitzebeständige Legierungen

AH130

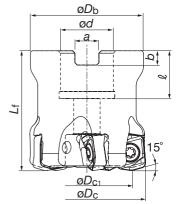
- Neu entwickeltes Substrat mit ausgewogener Härte und Zähigkeit
- Geeignet für die Bearbeitung von Stahl und rostfreiem Stahl

AH120

- Zuverlässiges, zähes Substrat
- Außergewöhnliche Verschleißfestigkeit
- Bestens geeignet für die Zerspanung von Eisengusswerkstoffen

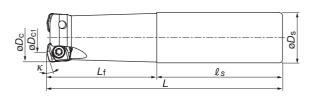
Wendeschneidplatten

LNMU03 LNMU06 -MJ Allgemeine Anwendung -ML Niedrige Schnittkräfte -MJ Allgemeine Anwendung -ML Niedrige Schnittkräfte Artikel Nr. Toleranz Schutzfase AH725 AH120 AH130 A B T 6


Artikel Nr.	Toleranz	Schutz-		Surten			ADITIESSUI	igen (illin)	
Artikei Mr.	TOTELATIZ	fase	AH725	AH120	AH130	Α	В	T	$r_{\!arepsilon}$
LNMU0303ZER-MJ			•		•	11.59	6.0	4.29	1.2
LNMU0303ZER-ML	М	mit	•		•	11.00	0.0	4.20	1.2
LNMU06X5ZER-MJ	IVI	11116	•	•	•	15	12	7	2
LNMU06X5ZER-ML			•	•	•	13	16	,	

Spezifikation Fräser

TXN06


Aufsteckfräser

EXNO3, EXNO6

Schaftfräser

LNMU03: Max. $a_p = 1.0 \text{ mm}$ LNMU06: Max. $a_p = 1.5 \text{ mm}$

Austauschteile

Beschreibung		Artikel Nr. Austauschteile							
Ha	lter	TXN06R	EXNO3R	EXNO6R					
Spa	annschraube	CSPB-5	CSPB-2.5	CSPB-5					
Issel	Torx Einsatz	BLD IP20/S7	IP-8D	IP-20D					
Schlüssel	Torx Schlüssel	H-TBS	IL-OD	IF-20D					

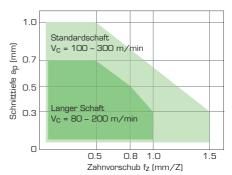
Aufsteckfräser

Artikel Nr.	Lager	Anzahl		Abmessungen (mm)								Kühl- mittel-	Wendeschneidplatte
AI GINGI IVII.	Lagei	Zähne	øDс	øD _{c1}	øDb	ød	l	Lf	b	а	(kg)	zufuhr	vvenueschneluplacce
TXN06R050M22.0E05	•	- 5	50	37.6	47						0.4		
TXN06R052M22.0E05	•	J	52	39.6	50	22	20	50	6.3	10.4	0.4		
TXN06R063M22.0E06	•	- 6	63	50.6	59			30			0.8	mit	LNMU06X5ZER-ML/ -MJ
TXN06R066M27.0E06	•	U	66	53.6	63	27	22		7	12.4	0.6		
TXN06R080M27.0E08	•	8	80	67.6	76	۲/		63	/	12.4	1.6		

Schaftfräser

ge			Anzahl		-	Abmes	sunge	n (mm)		Gewicht	Kühl-	
Länge	Artikel Nr.	Lager	Zähne	øDс	øD _{c1}	øDs	L	Lf	ls	κ	(kg)	mittel- zufuhr	Wendeschneidplatte
	EXN03R016M16.0-02	•	2	16	9.6	16	100	30	70		0.2		
	EXN03R018M16.0-02	•	ے	18	11.5	10	100	30	/0		0.2		
	EXN03R020M20.0-04	•	4	20	13.5	20	130	50			0.3		
	EXN03R022M20.0-04	•	4	22	15.5	ט	130	30		17°	0.3		LNMU0303ZER-ML/
ard	EXN03R025M25.0-05	•		25	18.5	25	140	60		17	0.5		-MJ
Standard	EXN03R028M25.0-05	•	5	28	21.5	כ	140	00	80		0.0		
Šť	EXN03R030M32.0-05	•		30	23.5						0.8		
	EXN03R032M32.0-06	•	6	32	25.5			70			1.1		
	EXN06R032M32.0-02	•	2	32	19.7	32					0.8		
	EXN06R035M32.0-02	•	_	35	22.7		150	45	105	15°	0.9		LNMU06X5ZER-ML/ -MJ
	EXN06R040M32.0-03	•	3	40	27.7			70	100		0.0	mit	
	EXN03R016M16.0-02L	•	2	16	9.6	16		50	100		0.2	11110	
	EXN03R018M16.0-02L	•	_	18	11.5	.0		25	125		0.2		
	EXN03R020M20.0-03L	•	3	20	13.5	20	160	80	80		0.3		
	EXN03R022M20.0-03L	•	J	22	15.5	0	100	30	130	17°	0.4		LNMU0303ZER-ML/
	EXN03R025M25.0-04L	•		25	18.5	25	180	100	80	.,	0.6		-MJ
Lang	EXN03R028M25.0-04L	•	4	28	21.5	1		35	145		0.7		
	EXN03R030M32.0-04L	•		30	23.5						0.9		
	EXN03R032M32.0-05L	•	5	32	25.5		200	120	80		1.1		
	EXN06R032M32.0-02L	•	2	32	19.7	32							LNMU06X5ZER-ML/
	EXN06R035M32.0-02L	•		35	22.7			45	155	15°	1.2		-MJ
	EXN06R040M32.0-03L	•	3	40	27.7		220		175		1.3		

Schnittdaten: EXNO3

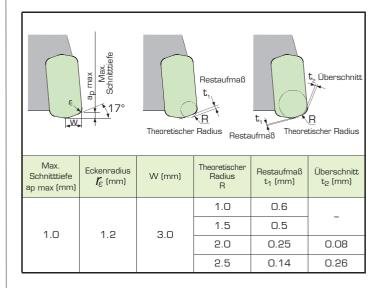

					Span-	Schnitt-	f	ahnvorschub z (mm/Z)		
We	rkstoff	Härte	Auswahl	Sorten	form- stufe	geschwindigkeit V _C (m/min)	Fräser ø16 – 22	Fräser ø25 – 32	Tauch- fräsen	
Stahl/hoher Ko (C45, C55)	ohlenstoffgehalt		1.Wahl	AH725	MJ		0.5 -1.2	0.5 - 1.5		
		- 300HB	niedrige Schnittkräfte	AH/25	ML	100 - 300	0.5 - 0.7	0.5 - 1.0	0.1	
			hoher Bruch- widerstand	AH130	MJ		0.5 -1.2	0.5 - 1.5		
Legierter Stahl (42CrMo4, 17Cr3 e			1.Wahl	AH725	MJ		0.5 -1.2	0.5 - 1.5		
		- 300HB	niedrige Schnittkräfte	AH/25	ML	100 - 200	0.5 - 0.7	0.5 - 1.0	0.1	
			hoher Bruch- widerstand	AH130	MJ		0.5 -1.2	0.5 - 1.5		
Vorvergüteter S (10Ni3MnCuAl, X36		30 - 40HRC	-	AH725	ML	100 - 200	0.5 - 0.7	0.5 - 1.0	0.1	
Rostfreier Stal (X5CrNi18-10, X5Cr		- 200HB	1.Wahl	AH130	ML	100 - 150	0.3 - 0.5	0.3 - 0.7	0.08	
		- 20086	hoher Bruch- widerstand	AHISU	MJ	100 - 130	0.3 - 0.8	0.3 - 0.8	0.06	
Grauguss (GG25, GG30 etc.)		150 - 250HB	-	AH725	MJ	100 - 300	0.5 - 1.2	0.5 - 1.5	0.1	
Kugelgraphitgu (GGG40 etc.)	ISS	150 - 250HB	-	AH/25	MJ	80 - 200	0.5 - 1.2	0.5 - 1.5	0.1	
Hitzebeständig (Ti-6Al-4V etc.)	e Legierungen	- 40HRC	-	AH725	ML	30 - 60	0.3 - 0.5	0.3 - 0.7	0.08	
Gehärteter Stahl	(X40CrMoV5-1)	40 - 50HRC		AH725	MJ	80 - 130	0.1 - 0.2	0.1 - 0.3	0.05	
	(X153CrMoV12)	50 - 60HRC	_	AII/ES	IVIU	50 - 70	0.03 - 0.05	0.03 - 0.07	0.03	

Beim Nutenfräsen oder Auskammern sollten die Späne mittels Druckluft antfornt worden.

Sicherheitshinweis

Werkzeuglänge

Beim Einsatz von Werkzeugen in langer Ausführung sollten die Werte für V_C , f_Z und a_D auf 70% der empfohlenen Schnittparameter der Standardschaftausführung reduziert werden.

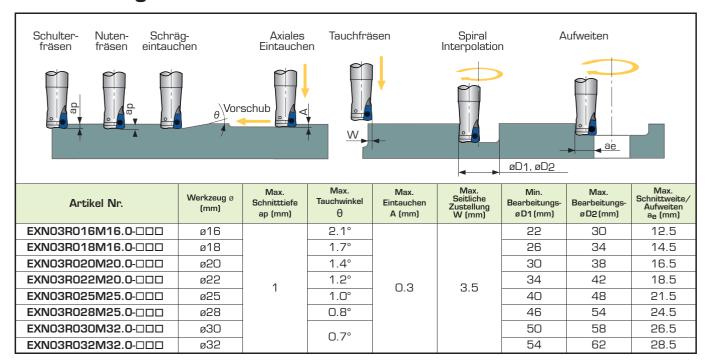

Werkzeug-ø: ø16 – ø32 mm Werkstoff: Kohlenstoffstahl C55 (200HB)

L/D Auskraglänge

Standardschaftausführung: $L/D \le 3$ Lange Schaftausführung: L/D = 4

Werkzeugprogrammierung

Bei der Werkzeugbahnprogrammierung sollte mit einem theoretischen Radius R = 1.5 mm und einem Restaufmaß, entsprechend der Tabelle gerechnet werden.



Auskraglänge sollte immer so kurz wie möglich sein um Vibrationen zu verhindern. Bei großer Auskraglänge sollten Drehzahl und Vorschub verringert werden.

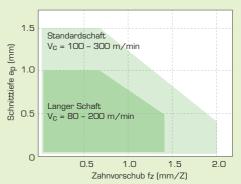
		V	/erkzeug	j-ø: øD _C	(mm), D ı	rehzahl:	n (min ⁻¹)), Vorsch	nub: Vf (mm/min), M ax.	Schnittti	i efe: ap	= 1.0 mr	n	
	ø16, 2	Z = 2	ø18, 2	Z = 2	ø20, 2	Z = 4	ø22, 2	Z = 4	ø25, i	Z = 5	ø28, 2	Z = 5	ø30, 2	Z = 5	ø32, 2	Z = 6
•	n	Vf	n	Vf	n	Vf	n	Vf	n	Vf	n	Vf	n	Vf	n	Vf
	3.980	6.370	3.540	5.660	3.180	10.190	2.900	9.260	2.550	12.740	2.270	11.370	2.120	10.620	1.990	11.940
			$V_{\rm C} = 20$	O m/min	$f_Z = 0.8$	3 mm/Z					$V_{\rm C} = 20$	0 m/min	$f_Z = 1.0$	D mm/Z		
	3.980	4.780	3.540	4.250	3.180	7.640	2.900	6.950	2.550	10.190	2.270	9.100	2.120	8.490	1.990	9.550
				O m/min		3 mm/Z						0 m/min	_	3 mm/Z		
	3.980	6.370	3.540	5.660	3.180	10.190	2.900	9.260	2.550	12.740	2.270	11.370		10.620	1.990	11.940
				O m/min		3 mm/Z						O m/min		D mm/Z		
	2.990	4.780	2.650	4.250	2.390	7.640	2.170	6.950	1.910	9.550	1.710	8.530	1.590	7.960	1.490	8.960
				O m/min		3 mm/Z					-	m/min	$f_Z = 1.0$			
	2.990	3.580	2.650	3.180	2.390	5.730	2.170	5.210	1.910	7.640	1.710	6.820	1.590	6.370	1.490	7.170
	0.000	4 700		O m/min		6 mm/Z	0.470	0.050		0.550		O m/min		3 mm/Z		0.000
	2.990	4.780	2.650	4.250	2.390	7.640	2.170	6.950	1.910	9.550	1.710	8.530	1.590	7.960	1.490	8.960
	0.000	0.500		O m/min		3 mm/Z	0.470	F 040	4.040	7.040		O m/min		0 mm/Z	4 400	7.470
-	2.990	3.580	2.650	3.180	2.390	5.730	2.170	5.210	1.910	7.640	1.710	6.820	1.590	6.370	1.490	7.170
	0.000	4.040		0 m/min		6 mm/Z	4.740	0.700	4 500	0.000		O m/min		3 mm/Z	4.400	0.500
-	2.390	1.910	2.120	1.700	1.910	3.060	1.740	2.780	1.530	3.820	1.360	3.410	1.270		1.190	3.580
	2.390	2.390	2.120	0 m/min 2.120	1.910	1 mm/Z 3.820	1.740	3.470	1.530	4.590	$v_c = 12$	0 m/min 4.100	$T_Z = 0.3$	5 mm/Z 3.820	1.190	4.300
	2.390	2.390		0 m/min		5.020 5 mm/Z	1.740	3.470	1.330	4.390		4. 100 0 m/min		3.020 3 mm/Z	1.130	4.300
	3980	6370	3540	5660	3180	10180	2890	9250	2550	12750	2270	11350	2120	10600	1990	11940
	3300	0070		0 m/min		3 mm/Z	2030	3230	2000	12/30		0 m/min		0 mm/Z	1330	11340
	2980	4770	2650	4240	2390	7650	2170	6940	1910	9550	1710	8550	1590	7950	1490	8940
-	2000	1770		O m/min		3 mm/Z	2170	00 10	1010	0000		O m/min) mm/Z	1 100	00 10
	800	640	710	570	640	1.020	580	930	510	1.270	450	1.140	420	1.060	400	1.190
			$V_{\rm C} = 40$	D m/min	$f_Z = 0.4$						$V_{\rm C} = 40$) m/min	f _Z = 0.5			
	1.990	600	1.770	530	1.590	960	1.450	870	1.270	1.270	1.140	1.140	1.060	1.060	1.000	1.190
			V _C = 100	D m/min	f _Z = 0.1	5 mm/Z					V _C = 10	O m/min	f _Z = 0.2	2 mm/Z		
	1.190	100	1.060	90	960	150	870	140	760	190	680	170	640	160	600	180
			$V_{\rm C} = 60$	m/min	$f_Z = 0.04$	1 mm/Z					$V_{\rm C} = 60$	m/min	$f_Z = 0.05$	5 mm/Z		

Die angegebenen Schnittwerte beziehen sich auf die Standardschaftausführung.
 Bei langer Schaftausführung kann die Anzahl Zähne variieren. Hierzu bitte "Sicherheitshinweis" zur Werkzeuglänge auf Seite 6 beachten.

Anwendungen

Die Schnittdaten sind immer abhängig von der Stabilität und Leistung der Bearbeitungsmaschine sowie den Werkstück-Eigenschaften. Die empfohlenen Schnittdaten sind Startparameter und sollten je nach Bearbeitungsumfeld optimiert werden.

Schnittdaten: EXNO6 / TXNO6

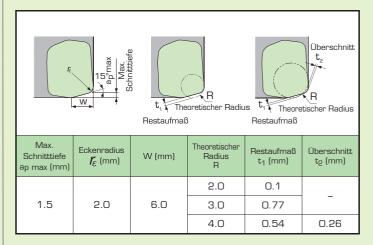

We	rkstoff	Härte	Auswahl	Sorten	Span- form- stufe	Schnitt- geschwindigkeit V _C (m/min)	Zahnvorschub f _Z (mm/Z)	Zahnorschub/ Tauch- fräsen f _Z (mm/Z)	
Stahl/hoher Ko (C45, C55)	ohlenstoffgehalt		1.Wahl	AH725					
		- 300HB	niedrige Schnittkräfte	AH120		100 - 300	0.5 - 1.5		
			hoher Bruch- widerstand	AH130					
Legierter Stahl (42CrMo4, 17Cr3 e			1.Wahl	AH725	MJ			0.15	
		- 300HB	niedrige Schnittkräfte	AH120		100 - 200	0.5 - 1.5		
			hoher Bruch- widerstand	AH130					
Vorvergüteter S (10Ni3MnCuAl, X36	Stahl (CrMo17 etc.)	30 - 40HRC	-	AH725	ML	100 - 200	0.5 - 1.0		
Rostfreier Stah (X5CrNi18-10, X5Cr		- 200HB	1.Wahl	A114.00	ML	100 - 150	0.3 - 0.7	0.1	
		- 200HB	hoher Bruch- widerstand	AH130	MJ	100 - 150	0.3 - 0.8	U.1	
Grauguss (GG25, GG30 etc.)		150 - 250HB	1.Wah		MJ	100 - 300	0.5 - 1.5		
		150 - 250HB	niedrige Schnittkräfte	A11400	ML	100 - 300	0.5 - 1.0	0.15	
Kugelgraphitgu (GGG40 etc.)	ISS	450, 050,10	1.Wah	AH120	MJ	00, 000	0.5 - 1.5	0.15	
		150 - 250HB	niedrige Schnittkräfte		ML	80 - 200	0.5 - 1.0		
Hitzebeständig (Ti-6Al-4V etc.)	e Legierungen	- 40HRC	-		ML	30 - 60	0.3 - 0.7	0.08	
Gehärteter Stahl	(X40CrMoV5-1)	40 - 50HRC		AH725	MJ	80 - 130	0.1 - 0.3	0.05	
	(X153CrMoV12)	50 - 60HRC	_		IVIJ	50 - 70	0.03 - 0.07	0.03	

Beim Nutenfräsen oder Auskammern sollten die Späne mittels Druckluft entfernt werden.

Sicherheitshinweis

Werkzeuglänge

Beim Einsatz von Werkzeugen in langer Ausführung sollten die Werte für Vc, fz und ap auf 70% der empfohlenen Schnittparameter der Standardschaftausführung reduziert werden.


Werkzeug-ø: ø32 – ø40 mm Werkstoff: Kohlenstoffstahl C55 (200HB)

L/D Auskraglänge

Standardschaftausführung: $L/D \le 3$ Lange Schaftausführung: L/D = 4

Werkzeugprogrammierung

Bei der Werkzeugbahnprogrammierung sollte mit einem theoretischen Radius R = 1.5~mm und einem Restaufmaß, entsprechend der Tabelle gerechnet werden.

Auskraglänge sollte immer so kurz wie möglich sein um Vibrationen zu verhindern. Bei großer Auskraglänge sollten Drehzahl und Vorschub verringert werden.

1.490	Z = 2 Vf 3.980	#35, and 1.820	Vf 3.640	## 40, a n 1.590 1.190	Vf 4.780	950	Vf 6.370	920	Vf 6.100 mm/Z 4.600	963 , 2 n 1.010	Vf 6.070	ø66, 'n 960	Vf 5.760	ø80, n 800	Vf 6.370
1.990	3.980	1.820	3.640	1.590	4.780	1.270 V _C = 2	6.370 200 m/min 4.750	1.220 f _Z = 1.0	6.100 mm/Z 4.600	1.010	6.070	960	5.760	800	6.370
1.490		1.360	2.720	1.190		950	4.750	920	4.600	760	4.560	720	4.320	600	4.800
1.490		1.360	2.720	1.190	3.570		l .			760	4.560	720	4.320	600	4.800
						V _C = 1	50 m/min	f _Z = 1.0	mm/Z						
1.490	2.380	1.360	2.180	1.190	2.860	950	3.800	920	3.680	760	3.650	720	3.460	600	3.840
4.400	4.400	4 000	4.000	050	4 400		50 m/min			040	4.000	E00	4.740	400	4.000
1.190	1.190	1.090	1.090	950	1.430	760	1.900 20 m/min	$f_Z = 0.5$	1.830	610	1.830	580	1.740	480	1.920
1.190	1.430	1.090	1.310	950	1.710	760	2.280	730	2.190	610	2.200	580	2.090	480	2.300
1.130	1.450	1.030	1.510	330	1.710		20 m/min			010	2.200	300	2.030	400	2.300
1.990	2.390	1.820	2.180	1.590	2.860	1.270	3.810	1,220	3.660	1.010	3.640	960	3.460	800	3.840
	1						200 m/min								
1.990	3.180	1.820	2.910	1.590	3.820	1.270	5.080	1.220	4.880	1.010	4.850	960	4.610	800	5.120
						V _C = 2	200 m/min	f _Z = 0.8	mm/Z						
1.490	2.980	1.360	2.720	1.190	3.570	950	4.750	920	4.600	760	4.560	720	4.320	600	4.800
						V _C = 1	50 m/min	f _Z = 1.0	mm/Z						
1.490	2.380	1.360	2.180	1.190	2.860	950	3.800	920	3.680	760	3.650	720	3.460	600	3.840
							50 m/min								
400	400	360	360	320	480	250	630	240	600	200	600	190	570	160	640
		,					40 m/min	f _Z = 0.5							
990	400	910	360	800	480	640	640	610	610	510	610	480	580	400	640
					_		00 m/min								
600	60	550	60	480	70	380	100 60 m/min	370	90	300	90	290	90	240	100

Die angegebenen Schnittwerte beziehen sich auf die Standardschaftausführung.
 Bei langer Schaftausführung kann die Anzahl Zähne variieren. Hierzu bitte "Sicherheitshinweis" zur Werkzeuglänge auf Seite 8 beachten.

ø52

ø63

ø66

ø80

ø32

ø35

ø40

1.5

85

109

112

143

47

53

63

6.0

97

121

124

155

59

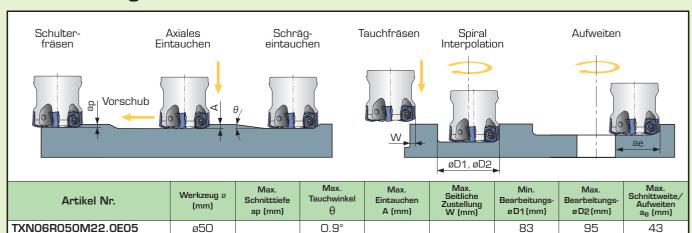
65

75

Anwendungen

TXN06R052M22.0E05

TXN06R063M22.0E06


TXN06R066M27.0E06

TXN06R080M27.0E08

EXN06R032M32.0-□□□

EXN06R035M32.0-□□□

EXN06R040M32.0-

0.8°

0.6°

0.5°

2.0°

1.7°

1.3°

0.5

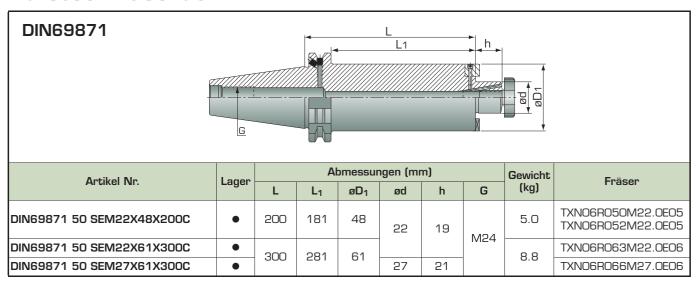
45

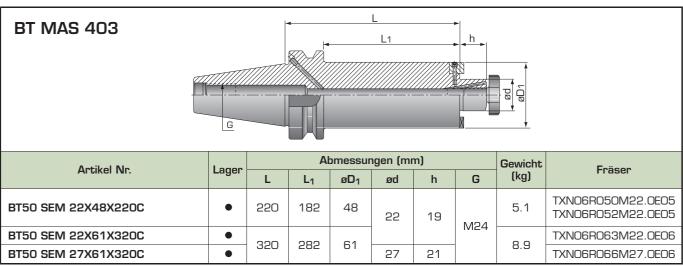
56

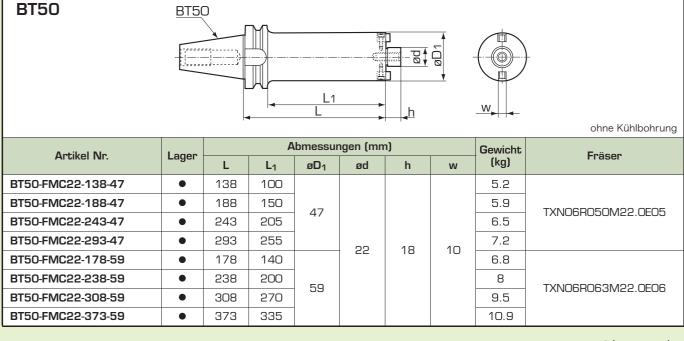
59

73

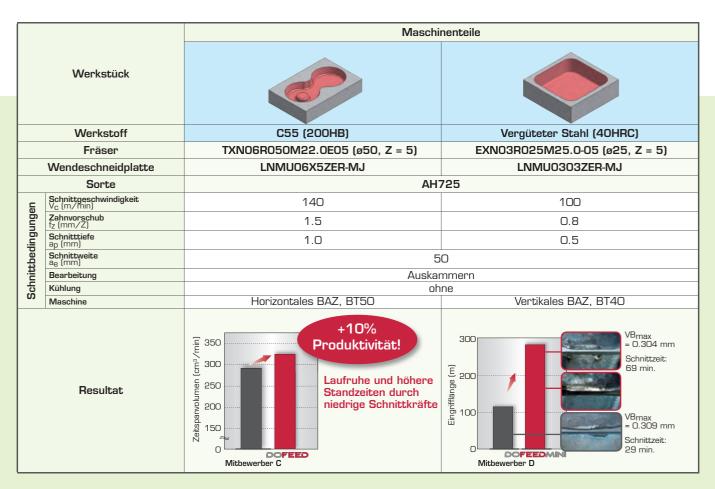
25


28


33


Die Schnittdaten sind immer abhängig von der Stabilität und Leistung der Bearbeitungsmaschine sowie den Werkstück-Eigenschaften. Die empfohlenen Schnittdaten sind Startparameter und sollten je nach Bearbeitungsumfeld optimiert werden.

Aufsteckfräserdorn



Praktische Beispiele

		Gussform für Ku	inststoffprodukte
	Werkstück		
	Werkstoff	Legierter Werkzeugstahl (30HRC)	GG25 (150HB)
	Fräser	TXN06R063M	22.0E06 (ø63, Z = 6)
	Wendeschneidplatte	LNMU06X5ZER-ML	LNMU06X5ZER-MJ
	Sorte	AH725	AH120
E	Schnittgeschwindigkeit V _C (m/min)	20	00
Schnittbedingungen	Zahnvorschub f _Z (mm/Z)	1.2	1.0
ling.	Schnitttiefe ap (mm)	0.8	1.0
tbec	Schnittweite a _e (mm)	40	63
불	Bearbeitung	Planfräsen/Auskammern	Planfräsen
등	Kühlung		ine
0,	Maschine	Horizontales BAZ, BT50	Sondermaschine, BT50
	Resultat	Zeitspanvolumen! 150% Zeitspanvolumen! 1.5fach gesteigerte Produktivität durch hohe Anzahl an Schneiden Mitbewerber A	Bearbeitungszeit um 140% verbessert! Die hohe Verschleiß- festigkeit der Sorte AH120 reduziert Schnittkräfte, die hohe Zähigkeit erhöht die Standzeit.

Praktische Beispiele

		Leitraddüse	Luftfahrt Komponente
	Werkstück		Edistant o Nonipolicine
	Werkstoff	Hitzebeständiger Gussstahl	Ti-6Al-4V (36HRC)
	Fräser	EXN03R030M32.0-05 (ø30, Z = 5)	EXN03R025M25.0-05 (ø25, Z = 5)
	Wendeschneidplatte	LNMU030	D3ZER-ML
	Sorte	AH	725
<u></u>	Schnittgeschwindigkeit V _C (m/min)	70	50
agur	Zahnvorschub f _Z (mm/Z)	0.5	0.7
Schnittbedingungen	Schnitttiefe ap (mm)	0	.5
cbed	Schnittweite a _e (mm)	30	25
Ę.	Bearbeitung	Schulterfräsen	Auskammern
등	Kühlung	Emu	
,	Maschine	Vertikales BAZ, BT50	Vertikales BAZ, BT40
	Resultat	16 faches Zeitspanvolumen! 30 25 36 20 36 25 25 36 25 25 36 25 25 25 25 25 25 25 25 25 25 25 25 25	(uim/

Tungaloy Corporation (Zentrale)Tel. +81-246-36-8501, Fax +81-246-36-8542 http://www.tungaloy.co.jp

Tungaloy America, Inc. Tel. +1-888-554-8394, Fax +1-888-554-8392 www.tungaloyamerica.com

Tungaloy Canada Tel. +1-519-758-5779, Fax +1-519-758-5791 www.tungaloyamerica.com

Tungaloy de Mexico S.A. Tel. +52-449-929-5410, Fax +52-449-929-5411 www.tungaloyamerica.com

Tungaloy do Brazil Comércio de Ferramentas de Corte Ltda. Tel. +55-19-38262757 Fax:+55-19-38262757

www.tungaloy.co.jp/br Tungaloy France S.A.S.

+33-1-6486-4300, Fax +33-1-6907-7817 www.tungaloy.fr

Tungaloy Germany GmbH An der Alten Ziegelei 1

D - 40789 Monheim, Germany +49 - (0)2173 - 90 4 20 - 0 +49 - (0)2173 - 90 4 20 - 19

E-Mail info@tungaloy.de www.tungaloy.de

Tungaloy Italia S.p.A.

Tel. +39-02-252012-1, Fax +39-02-252012-65 www.tungaloy.co.jp/it

Tungaloy Czech s.r.o

+420-272652218, Fax 420-234064270 www.tungaloy.co.jp/cz

Tungaloy Ibérica S.L.

Tel. +34 93 1131360 Fax:+34 93 1131361 www.tungaloy.co.jp/es

Tungaloy Scandinavia AB

Tel. +46-462119200, Fax +46-462119207 www.tungaloy.co.jp/se

LLC Tungaloy Rus

Tel. +7-4722 58 57 57, Fax +7-4722 58 57 83 www.tungalov.co.ip/ru

Tungaloy Polska Sp. z o.o.

+48-22-617-0890, Fax +48-22-617-0890 www.tungaloy.co.jp/pl

Tungaloy U.K. Ltd

Tel. +44 121 244 3064, Fax +44 121 270 9694 www.tungaloy.co.jp/uk, salesinfo@tungaloyuk.co.uk

Tungaloy Cutting Tool (Shanghai) Co.,Ltd.

Tel. +86-21-3632-1880, Fax +86-21-3621-1918 www.tungaloy.co.jp/tcts

Tungaloy Cutting Tool (Thailand) Co.,Ltd.

Tel. +66-2-714-3130, Fax +66-2-714-3134 www.tungaloy.co.th

Tungaloy Singapore (Pte.), Ltd.Tel. +65-6391-1833, Fax +65-6299-4557

www.tungalov.co.ip/tspl

Tugaloy India Pvt. Ltd. Tel. +91-22-6124-8803, Fax +91-226124-8899 www.tungalov.co.jp/tspl

Tungaloy Korea Co., Ltd

+82-2-6393-8930, Fax +82-2-6393-8952 www.tungalov.co.ip/kr

Tungaloy Malaysia Sdn Bhd

Tel. +603-7805-3222, Fax +603-7804-8563 www.tungaloy.co.jp/my

Tungaloy Australia Pty Ltd

+612-9672-6844, Fax +612-9672-6866 www.tungaloy.co.jp/au

ISO 9001 certified QC00J0056 Tungaloy Corporation ISO 14001 certified EC97J1123 Tungaloy Group Japan site and Asian production site 26/11/1997