548,282 active members*
1,971 visitors online*
Register for free
Login Register

Perfection in Protection, Licensing, and Security

Crypto-Agility for Post-Quantum Security

September 2020
Author: med_wibu-systems
Crypto-Agility for Post-Quantum Security

There is concern by some that quantum computers present an imposing threat to current cryptographic methods designed to keep our critical infrastructure, systems, and data safe. This is particular true in the medical device industry. This concern is the main driver for the creation of the PQC4MED research project in 2019, funded by the German Ministry of Education and Research. The project is dedicated to equipping medical devices with post-quantum cryptography (PQC) capabilities through security-by-design. Their primary goal is to integrate “crypto-agility” in embedded systems early on in the manufacturing process.

What exactly is quantum computing? A classic definition is the use of quantum phenomena such as superposition and entanglement to perform computation. Quantum computing uses a combination of bits to perform specific computational tasks. All at a much higher efficiency than their classical counterparts. Quantum computers are believed to be able to solve certain computational problems, such as integer factorization (which underlies RSA encryption), substantially faster than classical computers. And, therein lies the fear that a quantum computer could break many of the cryptographic systems in use today, which would be particularly dangerous in the healthcare industry.

How acute is the threat to existing cryptographic methods? While it is difficult to predict, the National Institute of Standards (NIST) puts forth “Mosca’s Theorem” to make an estimate. They say that “If X + Y > Z, then worry.” With this theory, X is the time for which currently used cryptography has to remain safe. Y is the time needed to prepare infrastructure for switching its cryptographic paradigm, substituting the corresponding procedures, and re-protecting all data currently protected with previous procedures. Z is the time it takes until a quantum computer is available that is powerful enough to break current cryptographic procedures. According to NIST, this could be as soon as Z=15 years.

The PQC4MED project is working to implement post-quantum-secure methods before that time estimate becomes a reality. These methods are based on hard mathematical problems for which neither a conventional nor an efficient quantum algorithm has yet been found. Candidates for post-quantum secure methods are lattice-based methods, code-based methods, isogenies (mappings between elliptic curves), multivariate polynomials, and hash-based methods. All of these methods differ strongly with respect to their key size, security, and efficiency. Furthermore, there are strong differences in their suitability for encryption and signatures. PQC algorithms are often less well studied cryptanalytically than conventional cryptography. Especially for the security of embedded devices, which is dependent on efficient algorithms, this introduces a risk that already implemented methods might have to be replaced.

Medical technology is known for its reliance on embedded systems. It is critical that these systems meet the high level of security required in the healthcare industry while protecting both sensitive patient data and the Intellectual Property inherent in the software used in these devices. In order to achieve long-term security and be able to react with sufficient speed to new cryptanalytic results, a high degree of crypto-agility – even across different PQC classes – must be developed.

According to PQC4MED, in order to guarantee sustainable information security, "long-term security-by-design" must be achieved as early on as possible in the development of next generation devices. This means equipping embedded systems with hardware resources that integrate the latest cryptographic procedures. An updatable secure element forms the basis for any long-term guarantee of QC-resistant procedures and serves as an anchor of trust that enables "crypto-agility". This means that potential threats are fended off long before they take effect.

PQC4MED believes crypto-agility needs to be achieved by:

  • Developing and integrating powerful and flexible secure elements with upgradeable firmware.
  • Developing a backend infrastructure with protection, licensing, and key management tools secure enough against quantum computers and resources for automating and controlling the system.
  • Providing a process and user interface for on-site updates.

The PQC4MED project is supported by a number of collaborators from science and industry including Infineon Technologies, Schölly Fiberoptic GmbH, macio GmbH, the Institute for IT Security of the University of Luebeck, the German Research Center for Artificial Intelligence, the research group KASTEL, as part of the Institute for Theoretical Computer Science of the Karlsruhe Institute of Technology, and Wibu-Systems.

You can read more about the project in the article, Crypto-agility for Post-Quantum Security in Medical Devices, by Dr. Carmen Kempka, recently published by Silicon Trust in their Vault magazine.


Blog Archiv

November 2021
October 2021
September 2021
August 2021
July 2021
June 2021
May 2021
April 2021
March 2021
February 2021
January 2021
November 2020
October 2020
September 2020
August 2020
July 2020
June 2020
May 2020
April 2020
March 2020
February 2020
January 2020
November 2019
October 2019
September 2019
August 2019
July 2019
June 2019
May 2019
April 2019
March 2019
February 2019
January 2019
December 2018
November 2018
October 2018
September 2018
August 2018
July 2018
June 2018
May 2018
April 2018
March 2018
February 2018
January 2018
December 2017
November 2017
October 2017
September 2017
August 2017
July 2017
June 2017
May 2017
April 2017
March 2017
February 2017
January 2017
December 2016
October 2016
September 2016
July 2016
June 2016
May 2016
April 2016
March 2016
February 2016
January 2016